环境配置 import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor from torch.autograd import Variable 数据准备 df = pro.daily(ts_code='000001.SZ', start_date='20220101', end_date='20220326') df['date'] = pd.to_datetime(df['trade_date']) df['adj_close'] = df['close'] df['volume']=df['vol'] df['month'] = pd.DatetimeIndex(df['trade_date']).month df = df[['date','open','high','low','close','adj_close','volume','month']] print(df.head()) import numpy as np # x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1) # y = x.pow(4)+0.1*torch.randn(x.size()) x_data = torch.unsqueeze(torch.tensor(df['high'].astype(np.float32).values),dim=1) x = (x_data-x_data.min())/(x_data.max()-x_data.min()) y_data = torch.unsqueeze(torch.tensor(df['close'].astype(np.float32).values),dim=1)